На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
общая лексика
распознавание изображений
идентификация объектов на введенном в компьютер изображении. Этот процесс начинается с обработки изображения, удаления шума, выделения линий, контуров и областей текстур. Распознавание изображений традиционно относится к задачам искусственного интеллекта
общая лексика
машинное зрение, техническое зрение
направление искусственного интеллекта и обработки изображений, занимающееся обработкой изображений реальной действительности
Смотрите также
математика
опознавание образов
общая лексика
распознавание лиц
один из способов биометрической идентификации личности - способность компьютерной системы распознавать людей по изображению лица. Такая система должна различать личность независимо от цвета загара, изменения причёски и т.п.
Смотрите также
['pætnrekəg'niʃ(ə)n]
общая лексика
распознавание образов
идентификация графических изображений с помощью компьютерных технологий. Используется, в биометрических методах контроля доступа для распознавания голоса, отпечатков пальцев, фотографий и. п
Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions. Understanding in this context means the transformation of visual images (the input of the retina) into descriptions of the world that make sense to thought processes and can elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory.
The scientific discipline of computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences, views from multiple cameras, multi-dimensional data from a 3D scanner, or medical scanning devices. The technological discipline of computer vision seeks to apply its theories and models to the construction of computer vision systems.
Sub-domains of computer vision include scene reconstruction, object detection, event detection, video tracking, object recognition, 3D pose estimation, learning, indexing, motion estimation, visual servoing, 3D scene modeling, and image restoration.
Adopting computer vision technology might be painstaking for organizations as there is no single point solution for it. There are very few companies that provide a unified and distributed platform or an Operating System where computer vision applications can be easily deployed and managed.